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ABSTRACT 

This report describes a new, flexible computer code in the FORTRAN computer 
language to make ray calculations for ocean acoustic tomography. The Numerical 
Recipes software package provided the basis for much of this computer code. The ray 
equations are reviewed, and ray equations that include the effects of ocean current are 
derived. Methods are derived for rapidly integrating those equations to obtain time front 
and eigenray information for long-range, deep-water acoustic transmissions. These meth- 
ods include a look-up table for sound speed, sound speed gradient, second derivative of 
sound speed, and range-dependent information. Cubic spline methods are used to inter- 
polate sound speed with depth and to obtain the derivatives of sound speed. The choice 
of the step size increments used to integrate the equations is a critical aspect of the inte- 
gration, affecting both the accuracy of the prediction and the speed of computation. A 
predetermined, user-specified step size appears to allow more efficient calculations than 
"adaptive step" methods. "Adaptive step" methods adjust the step size automatically to 
maintain a given accuracy in the integration of the ray equations, while user-specified 
step sizes allow one to use prior knowledge of the integration problem to achieve the 
desired accuracy with much less computational overhead. Several integration methods 
were explored, but the classical 4th order Runge-Kutta method appears to be the most 
efficient and best method for this integration problem. Appendices describe detailed 
aspects of the computer code, as well as the methods used for deriving eigenray informa- 
tion and for parallelizing the ray calculations. The computer code is designed to be 
unstable so that the user can easily modify it to his or her own porpoises. 
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MOTIVATION 

Although numerous ray tracing codes are available, none satisfy all of the present 
requirements of long-range ocean acoustic tomography. Ocean acoustic tomography is 
described by Munk, Worcester, and Wunsch (1995). What is required for long-range 
tomography is a fast, accurate, and flexible code. The requirement of flexibility necessi- 
tates coding that can be easily modified by the user; thus FORTRAN is the preferred 
computer language. Flexibility allows the user to easily implement his or her own algo- 
rithms, such as a better search for eigenrays or an alternative (perhaps faster or more 
accurate) integration routine. Issues of numerical accuracy in ray predictions are dis- 
cussed in the section on integrating the ray equations. Finally, the requirement of speed 
necessitates coding that can sometimes become opaque. This report therefore also 
describes the methods employed to achieve computer code that is highly efficient. 

The present and immediate goal of the authors of this report is to achieve fast, 
accurate wavefront and eigenray travel time predictions at basin scale ranges (3-5 Mm) 
in the North Pacific Ocean as part of the North Pacific Acoustic Laboratory and Acoustic 
Thermometry of Ocean Climate projects (Dushaw 1999; Dushaw et al. 1999; Worcester 
et al. 1998, Colosi et al. 1999). These projects require eigenray predictions for a half 
dozen or so time series of sound speed sections derived from acoustic data obtained at 
3-5 Mm range. For a single sound speed section, calculation of the time series of ray 
travel times takes about 30 hours on a 200-MHz Pentium Pro computer, so the need for 
the fastest possible code is evident. 

Many of the ideas used in implementing the code to be discussed here originated in 
the RAY code and associated technical report by Bowlin et al. (1992). Alas, this code is 
in C. The new computer code described here uses the FORTRAN cubic spline and inte- 
gration routines from Numerical Recipes (Press et al. 1992; Numerical Recipes here- 
inafter); thus use of this code requires a license to use the Numerical Recipes software 
($40). 

CREDO: The code described here is meant to be easily modified by the user, and 
so it will never be a stable ray code. The code is meant to be transparent and fast. 
Metaphorically, if the Bowlin RAY code is a Fiat 2000 with a Fiat engine, the code 
described here is a '67 Chevy Impala with JATO (Jet Assisted Take-Off) propulsion.* 

*Urban Legend No. 37 
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RAY EQUATIONS, OR EQUATIONS OF MOTION 

According to Bowlin et al. (1992):  The equations of motion for a ray traveling 
through the ocean can be cast in Cartesian coordinates as follows: 

de 
dr 

drc 

c 
tan<9- 

dzc 

c 

dz _ 
dr'' 

= tan# 

dt seed 

dr~ = c 

(la) 

(lb) 

(lc) 

where 6 is the angle of the ray with respect to the horizontal r axis, and z is the vertical 
coordinate [positive upward]. 

Bowlin et al. (1992) continue: For long range ocean acoustics, the curvature of the 
Earth's surface makes non-Cartesian coordinates more suitable for ray tracing. Let new 
z' axes lie along radii passing through the center of the Earth with z' = Oat sea level and 
z = Re at the Earth's center, where Re is the radius of the Earth, and let the new r' be the 
range measured along a circular arc at sea level  The new equations of motion which 
include the geometrical effects due to a spherical Earth are 

^. = /^_^tan0_-L (2a) 
dr'    Je   c c Re 

*=/etan0 (2b) 
dr 

dt _ fesecd 

~d?~     c 
(2c) 

where 

f = — = (Re ~ Z^ (3) 
h ~ dr' Re 
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These are the equations that RAY integrates.... [These latter equations have z positive 
downward.] However, the RAY code actually integrates not 8, but cos 8 and sin 8, thus 
avoiding the calculation of the transcendental functions. 

An alternate way to integrate these equations is to use the equations in Cartesian 
coordinates (the equations above with Re—>oo and /«—>1) but apply the well-known 
Earth flattening transformation (Aki and Richards 1980). This transformation is applied 
once to the initial sound speeds and associated depths, and the subsequent integration in 
the Cartesian coordinates is then mathematically equivalent to the above equations. Phys- 
ically, this transformation is a stretching of depth and sound speed equivalent to the cur- 
vature of the Earth's surface. If e = zlRe (z positive downward) then the Earth flattening 
transformation is z = z * (1 + ell + e * e/3) and c = c * (1 + e + e * e). Since some com- 
putation can be saved if this transformation is applied once before integrating the differ- 
ential equations, this transformation together with the Cartesian differential equations is 
preferred. Ray predictions using the two methods agree to within 1 ms at 3-Mm range, 
and the integration of the Cartesian equations appears to be roughly 10% faster. 

If cs = cos 8, sn = sin 8 and we apply the flat Earth transformation to z and c, the 
equations above can be re-written as 

(4a) 
d cs 
dr' 

- sn \dz' I c 
c     dr'C sn 

c   cs 

d sn 
dr' 

(d,c 
cs\  

d/C sn^ 
c   cs, 

dz 
dr' 

sn 

cs 

dt 1 
dr' 

■" 

CCS 

(4b) 

(4c) 

(4d) 

No trigonometric functions need to be calculated while integrating these equations. Since 
integration of these equations is most sensitive to the angle integration, the redundant 
equations for angle (the equations for cs and sn) are actually helpful for the stability of 
the integration. The above equations can be cast in only three equations, where the first 
equation is for d(tan8)/dr, but this formulation involves a term sqrt(l+tan 0*tan 8) in the 
integration for travel time (see Appendix B). This square root is computationally expen- 
sive (for one test case it increased computation time by about 15%), perhaps more expen- 
sive than integrating the additional differential equation. Similarly, it is important to code 

TM 3-98 



.UNIVERSITY OF WASHINGTON • APPLIED PHYSICS LABORATORY. 

these equations using the smallest number of divisions; a division is about as computa- 
tionally expensive as taking a square root. 

For the open-ocean environment of the North Pacific, the term involving dcldr in 
the above equations appears to be 5-6 orders of magnitude less than the other terms. Ray 
predictions using Levitus sound speeds with and without the dcldr term were insignifi- 
cantly different. As Bowlin et al. (1992) comment, if... an environment where dropping 
the dcldr term [in Eq. 4] produces a significant change in the wavefront then it is very 
likely that the linear range dependent model is inadequate for that environment even if 
the dcldr term is included. This term is therefore commented out in the code for effi- 
ciency purposes, but the user concerned with significant range dependence should con- 
sider checking if this term is important or not. 

LOOK-UP TABLES AND SOUND SPEED INTERPOLATION 

It is clear that a fast code will necessarily rely on look-up tables for sound speed, 
sound speed gradient, and other parameters. Depth is the obvious index to these look-up 
tables, since with this index the sound speed values can be quickly obtained at arbitrary 
depths during the integration. As pointed out by Bowlin et al. (1992), the rapid, accurate 
calculation of sound speed, sound speed gradient, etc., at arbitrary depth and range is a 
critical aspect of the ray prediction. 

For the present code, we adopt cubic splines for interpolation of sound speed 
{Numerical Recipes) and for the calculation of sound speed gradients. Splines have been 
discussed in the context of calculating acoustic rays by Moler and Solomon (1970). 
Cubic splines are mathematically the most natural and smoothest interpolation; their goal 
in life is to minimize the second derivative of the interpolation (Parker 1994). The 
smoothest possible interpolation is essential because of the sensitivity of the ray predic- 
tions to sound speed gradient. In addition, cubic splines allow the sound speed gradient 
to be calculated quickly and accurately. 

We note again that it is essential that smoothly varying sound speeds be used for 
ray predictions. It is therefore important for the user of any ray trace code to apply any 
desired smoothing or interpolation—horizontally or vertically—prior to the ray predic- 
tion. The code does not implement any smoothing of the user's sound speed profiles. 
Such smoothing necessarily requires allowing some misfit to the sound speed values, 
which can lead to biases in the sound speed profiles. Since the code described by Bowlin 
et al. (1992) applies some smoothing to the sound speed profiles, Bowlin et al. discuss 
this bias problem at length; it is perhaps a problem best left to the user of the code. 

The cubic spline interpolation method is described by Numerical Recipes and 
Parker (1994), so only the details appropriate to the present application are discussed 
here. Typically, sound speed values for ray tracing are available at a small number of 
depths, 30-100 say. The cubic spline method is used to interpolate those values, as well 
as values for the first and second derivatives, to 3-m increments throughout the water 
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column, and these values are used to fill a table of sound speed values. (To properly han- 
dle surface reflected rays, the value for sound speed at the surface is repeated at 3 m 
above the ocean surface.) For arbitrary depth z, the sound speed can be calculated by 

where Cj = c(Zj), dz = z- int(z), and j = int(z) gives the index in the sound speed look- 
up table. While this is an approximation for sound speed, it is sufficiently accurate for 
ray tracing. 

Sound speed gradient in the ray equations must be calculated carefully, since even 
small errors in this quantity result in ray predictions with poor quality. With cubic 
splines, the sound speed gradient at arbitrary depth z between the y'th and (j + l)th depths 
is (Numerical Recipes) 

dc     c,+1 - Cj     3A2 - 1 / x  „    3B2 - 1 
= -^ J- -— (zj+] - Zj) c'J+ —-— (zj+l - Zj) cj+l (6) 

dz     zj+i - Zj 6 6 

where 

As 
z^~z t Bm   Z~Zj   =1-A (7) 

Zj+i      Zj Zj+\      Zj 

However, the difference between adjacent depths in the table is a constant Az = 3 m, and 
many of the terms in this equation are constant and so may be calculated prior to the inte- 
gration. When a 1-m depth increment is used, the equations simplify even further at the 
expense of a very large look-up table. Thus, the equation for the first derivative becomes 
(positive z is downward) 

dc     A2c'J    B2c'J+, — = L const, j (8) 
dz      2Az        2Az J 

where one half the second derivative and const.j are calculated ahead of time in the look- 
up table. 

,       ci+\ ~ cj . Az(cy-c^i) 
const.; = -J-—  H  (y) J Az 6 
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The vertical gradient of sound speed can be calculated rapidly and accurately in this way. 
Note that while the Taylor expansion approximation for c(z) in Eq. 5 is adequate, the 
Taylor expansion approximation for dcldz is not. 

Range dependence is implemented by assuming a constant horizontal sound speed 
gradient and a constant horizontal gradient of the vertical gradient of sound speed. Thus, 

c(rM, z) - c(rh z) .,_. 
c(r, z) = c(rj, z) + (r- rj) -^ J— (10) 

for an integration step at range r between the ;th and (j + l)th sound speed profiles. The 
equation for the horizontal dependence of sound speed vertical gradient is similar. All 
indications (Bowlin et al. 1992) are that these approximations for range dependence are 
adequate. It is essential to implement at least a constant sound speed gradient between 
sound speed profiles, however, because jumping from one profile to another in a discon- 
tinuous fashion produces a multitude of false caustics in the time front. 

The sound speed look-up table containing the information required to calculate 
sound speed and sound speed gradient, including their range dependence, at arbitrary 
depth and range may be constructed using a three-dimensional matrix of depth, range, 
and six variables at those depths and ranges. We use 1835 depths at 3-m increments and 
the ranges given by the initial set of sound speed profiles. The six variables at those 
depths and ranges are sound speed, sound speed gradient, sound speed second derivative 
with depth, horizontal derivative of sound speed, horizontal derivative of sound speed 
gradient (assuming a constant gradient between profiles), and the constant term described 
above for calculating sound speed gradient at arbitrary depth. With these variables, sound 
speed and sound speed gradient can be calculated at arbitrary depth and range very effi- 
ciently. This double precision table, if filled, uses about 13 Mbytes of computer memory 
for 150 sound speed profiles. 

INTEGRATION OF THE DIFFERENTIAL EQUATIONS 

There are several well-known methods for integrating a coupled set of ordinary dif- 
ferential equations such as Eq. 4. One of the most common is the Runge-Kutta method. 
Applied to Eq. 4, this method involves a series of range steps. The derivatives of ray 
angle, depth, and travel time with respect to range are calculated at each step. When 
using any integration method, it is important to monitor truncation error or to otherwise 
assure that the integration is accurate. Developing code that obtains acceptable errors in 
the integration in a timely fashion is the essence of the difficulty of developing a ray inte- 
gration code. The most stringent accuracy requirements occur in the integration of ray 
angle. The nature of this difficulty can be shown by noting that the main term in Eq. 
4,(l/c)dc/dzequals d(\n(c))/dz, and that sound speed varies by only about 5% in the 
water column.  Since ln(c) varies by even less, the errors in estimating the derivative 
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rapidly wreck the integration. 

The Numerical Recipes textbook describes an integration method involving "adap- 
tive stepping." This technique involves measuring the truncation error at each step and 
then modifying the step size such that the integration maintains a specified level of error. 
This ensures both that the integration is accurate and that step sizes are not so small as to 
involve unnecessary computation. Properly employed, an "adaptive step" method can 
result in significant improvements in computation time. 

In the present case, however, we already know a great deal about the ray tracing 
problem, unlike a generic integration problem. For example, given the nature of the ray 
tracing problem, it is probable that step sizes of 1 m are too small, and step sizes of 
1000 m are too large. It thus appears that using adaptive stepping will not result in an 
order of magnitude decrease in computation time as might be expected for an unknown, 
generic integration problem. It is true that adaptive stepping gives a measure of trunca- 
tion error, which is quite important. However, with experience the character of a pre- 
dicted wave front can be used to decide if predetermined step sizes are sufficiently small, 
or a few initial calculations can be made with different step sizes to test the convergence 
of the integration. Once the parameters of the integration are determined, speed of com- 
putation is the only remaining issue. 

It is not presently known whether an adaptive stepping method can be developed 
that will result in speedier computations than a user-specified stepping. It is certainly true 
that the "adaptive stepping" method described in the Numerical Recipes textbook is more 
computationally expensive than the user-specified stepping method that has been devel- 
oped for the present ray tracing code. It may be that once the nature of the problem has 
been well defined, adaptive step sizing is a computational overhead that is no longer 
required. Once the step sizes have been defined for the problem, the step sizes do not 
need to be recalculated every time. Figure 1 shows the step sizes determined by an adap- 
tive step ray trace and the predetermined step size currently implemented in the code. 
This predetermined step size is linear from the surface to a user-specified depth (1500 m 
in Figure 1) and has a hyperbolic tangent (tanh) functional form below that depth. While 
the predetermined steps are generally considerably smaller than the adaptively sized 
steps, the code using the former is significantly faster than the code using the latter. 

Besides the method used to derive the step sizes, a second issue is the method of 
integration to be employed. The Numerical Recipes textbook lists several methods: 
Classical 4th order Runge-Kutta, Cash-Karp Runge-Kutta, Bulirsch-Stoer, "predictor-cor- 
rector," and "stiff problem" integration. The Cash-Karp Runge-Kutta method is a 5th 
order method which also allows an estimate of truncation error using the difference 
between 4th and 5th order Runge-Kutta results. Since one often needs to integrate 
through mixed layers and other sharp features, the best integration method is probably 
Runge-Kutta, because many of the other methods require the integration problem to be 
relatively smooth. For a suitably chosen step size, the classical 4th order Runge-Kutta 
and the Cash-Karp Runge-Kutta methods produce nearly identical results in the ray trace. 
As pointed out in the Numerical Recipes textbook, higher order does not necessarily 
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mean higher accuracy. The classical 4th order Runge-Kutta is much cheaper to calculate. 
We tried to implement the Bulirsch-Stoer method, but it produced unsatisfactory results. 
We did not try to implement any "predictor-corrector" methods. 

At the present time we conclude that the most efficient way to make these calcula- 
tions is to use the classical 4th order Runge-Kutta with a step size that is predetermined. 
Several test cases of varying step sizes can be run initially to ensure that the integration is 
accurate before proceeding with the optimal calculations. The main issue is to balance 
speed and accuracy. We hold out the hope, however, that a more efficient adaptive step- 
ping scheme may be devised. (The Bolin RAY code adopts 4th order Runge-Kutta and 
predetermined step size as well. However, the step sizing is determined by the depth 
spacing of the sound speed data that are input. As a result Bowlin RAY predictions using 
sound speed profiles defined by many depths take longer to compute than predictions 
using sound speed profiles defined by few depths. It is probably better to have the step 
size vs accuracy issue explicitly recognized by the user of the code.) 

Step sizing is critical. Unsuitably defined step sizing causes irregular wave front 
predictions and can introduce biases to the time front. The user performing ray tracing 
for the first time on a particular problem is urged to try several step sizing definitions to 
ensure that the desired accuracy is obtained. It is far more difficult to derive eigenrays if 
the time front is irregular and rough. For adaptive step sizing the scaling of the variables 
in the problem is critical. High accuracy is needed at every step to avoid the accumula- 
tion of errors during the integration. This means that the scaling of the variables needs to 
be proportional to the step size. Small step sizes are required where d cos 6ldr ~ 0 (i.e., 
where dc/dz ~ 0) or where the sound speed changes rapidly. Thus small step sizes are 
usually required near the sound channel axis or near the surface. 

Other methods of integration have not yet been tested. It may well be that faster, 
more efficient methods than Runge-Kutta integration could be found. There is surely a 
mathematical analysis of the ray tracing problem that would point to the optimal method, 
but this is beyond the means of the authors. 

SURFACE AND BOTTOM REFLECTIONS 

Surface reflections are handled in a simple way in the code. The code determines 
at every step if a surface reflection is to occur in the next range step. If h is a range step 
to take after reaching a depth z„, then the depth of the ray after this step can be approxi- 
mated by zn+i « zn + dz/dr h. If z„+, is above the ocean surface, we can analytically 
solve for a new, shorter step size such that the ray will arrive exactly at the surface after 
this step. This works best (the approximate integration for the depth z„+1 has less error) 
when very small step sizes are taken near the surface. Once this has been done, we need 
merely change the sign of the ray angle and continue with our calculation. 

Because the step size derived to arrive exactly at the surface is approximate, the 
integration will occasionally produce a ray that passes infinitesimally above the ocean 
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surface. To ensure that the calculation can proceed without mishap in this case, the sound 
speed table includes a value for sound speed at 3 m above the ocean surface. The user 
can specify a tolerance for missing the ocean surface. In general, depth errors of several 
centimeters or more in the surface reflection will not significantly affect the ray tracing 
results. 

Bottom reflections are handled in a manner similar to surface reflections, with a 
few complications. The bottom is modeled as line segments between the depths specified 
in the input bathymetry file, and the ray reflects specularly. By simple geometry, if the 
incident angle is 0, the reflected angle is 6, and the angle of the bottom with respect to 
the horizontal is <t>, then 0 = - 6 + 2</>. The angle <f> is the arctangent of the slope of the 
bottom. 

The complexities arise in determining when the ray is approaching the ocean bot- 
tom and in solving for the step size required for the ray to reach the bottom exactly with- 
out overshooting. Suppose the segment of ocean bottom is modeled as B(r) = mr + b, 
where m is the bottom slope and b is a line intercept, and suppose the ray path is z(r). 
The sign of z-mr-b therefore determines which side of the bottom the ray is. Similarly 
to the surface reflection procedure, the sign of (z + hdz/dr)-m(r + h)-b is a test of 
whether the ray will cross the bottom on the next step of size h. This equation can also 
be used to solve for the step size h for the ray to exactly strike the bottom. However, 
because much larger step sizes are used near the ocean bottom than near the surface, the 
approximate integration by dzldr does not work very well. The code uses the constant 
ray slope approximation to determine when the ray is near the bottom, and then iterates 
step size to obtain the step size required to put the ray at the ocean bottom within a user- 
specified tolerance. In practice, a look-up table of range, depth, bottom slope, twice bot- 
tom angle, and the value of an intercept of the line segment is used to determine which 
segment of the bottom the ray is approaching and to calculate the reflection point and new 
ray angle. 

This code does not model the finite frequency effects on ray paths with small slope 
that pass near the surface (Murphy and Davis 1974; Odom 1998). The geometric ray the- 
ory described in this memorandum is an infinite frequency approximation which permits 
rays to make an arbitrarily close approach to the surface without being influenced by it. 
Only when the geometric rays actually contact the surface are they reflected. A finite fre- 
quency ray contains energy which decays exponentially above the geometric turning 
point, as shown by predictions using acoustic modes. The length of the exponential tail is 
frequency dependent with lower frequency rays having longer tails, thus more energy 
above the geometric turning point. Because of the exponential tail, the finite frequency 
ray senses the surface sooner than the corresponding geometric ray. The result is that the 
finite frequency ray turns at a shorter range from the source than the geometric ray with 
the same launch angle. This effect can cause significant changes to ray travel times and 
ray paths in very long range acoustic transmissions. In one example from the Eastern 
Pacific, the travel times were affected by 1-2 ms per surface interaction, but the rays have 
to be grazing the surface in just the right way for an effect of this magnitude 
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(M. Dzieciuch personal communication 1999, Worcester et al. 1998). However, it is diffi- 
cult to model the near-surface interaction with rays in a general way, particularly for 
broad-band acoustic transmissions. For the time being, those concerned about this effect 
may make an empirical assessment of its magnitude by comparing ray and mode or 
parabolic equation predictions. 

BENCHMARKING VS ACCURACY 

The speed of a ray prediction depends on the accuracy required by the user. Thus, 
it is virtually impossible to compare the speeds of various ray codes, unless one has a 
means of ensuring that the various predictions are to the same accuracy. The table below 
shows computation times for 5000 rays when using an early version of the ray code. The 
calculations are for a 3-Mm range, range-dependent sound speed section. For these cal- 
culations, the Step Size Scale is a scaling factor that is applied to the step size function 
shown in Figure 1. The table shows that the computation time depends linearly on the 
step size. 

Step Size Scale 0.5        1.0       2.0      4.0 
Computation Time (min.)     32.0      16.5      8.75     4.5 

Figure 2 shows that the time front predictions associated with these various step 
size scalings deteriorate considerably as step size is increased. By comparison, an adap- 
tive step size prediction took about 1 hour, the Bowlin RAY prediction (Figure 2) took 
34.0 minutes, and the Colosi prediction (Figure 2) (paranoid for accuracy) took over 
5 hours. While for all of these predictions the location of the individual ray arrivals may 
vary, all of the time fronts agree within milliseconds. The shape and absolute travel times 
of time fronts appear to be fairly robust. 

The lesson here is that the user of a ray code needs to balance his or her desire for 
accuracy against the speed of computation. 

The astute reader will have noticed in Figure 2 occasional gaps in the time fronts, 
particularly in the earliest part of the arrival pattern. These gaps apparently result from 
the ray approximation; similar predictions using the parabolic equation do not show these 
gaps. In the ray approximation, rays which pass near a surface layer will either travel into 
that surface layer or miss it altogether, even though the launch angle in the two cases may 
differ only infinitesimally. This property of the ray approximation is a likely cause of the 
gaps in the time front prediction. When such gaps occur near the depth of a receiver, it 
can be difficult to obtain an associated eigenray prediction. Indeed, difficulty in obtaining 
the eigenray prediction for a ray known to exist probably results from such an unphysical 
gap in the time front. 
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CONCLUSIONS 

We have described a method for making fast, accurate computations of acoustic 
rays as a tool for ocean acoustic tomography. We described ray equations, including a 
derivation of ray equations that include the effects of weak ocean currents (Appendix F). 
Methods using cubic spline interpolation and a look-up table allow sound speed and 
sound speed gradient to be calculated rapidly and accurately at arbitrary range and depth. 
The choice of the step size used in integrating the differential equations is critical, affect- 
ing both the computation time and the accuracy of the ray predictions. The best method 
for integrating the ray equations appears to be ordinary, classical 4th order Runge-Kutta 
integration. Presently known integration methods using the adaptive-step techniques to 
maintain a user-specified numerical accuracy appear to carry too much computational 
cost to be competitive. A user-specified step size greatly increases the efficiency of the 
computation, but a more efficient adaptive-stepping method may yet be devised. Integra- 
tion accuracy can be initially checked for a particular problem by repeating the ray pre- 
dictions with several trial step-size functions. 

For 5-Mm range acoustic transmissions across the North Pacific, eigenray travel 
times calculated with the code described here agreed with the travel times of the Bowlin 
code to within 20 ms. Similar agreement was found for other calculations at similar mul- 
timegameter range. The upper and lower turning depths of eigenray paths calculated 
using the code here and the Bowlin code agreed to within a few meters. Sound speeds 
calculated using the annual mean Levitus '94 ocean atlas were used for these calcula- 
tions. When calculating time fronts to similar accuracy, the present code appears to be 
comparable in speed to the Bowlin code. However, when calculating eigenrays 
(Appendix B), the present code appears to be 2-3 times faster than the Bowlin code 
because most of the time it integrates only two differential equations. In addition, the 
present eigenray code appears to be a little more effective at finding the eigenrays than 
the Bowlin code, so fewer rays need to be calculated to define the initial time front used 
to find the eigenrays. 

The code described here is inherently unstable, yet it is highly flexible. The com- 
puter code is easily modified for particular problems. One application of this code may 
be to calculate the forward problem matrices used for travel time inversion while calculat- 
ing the eigenrays. This calculation would result in more accurate matrices and it will not 
require saving the ray paths to one's hard disk. As described in some of the appendices, 
the code can calculate eigenrays, can be modified to run on a parallel computer for 
rapidly obtaining ray predictions, or can be modified to include the effects of ocean cur- 
rent. The present suite of software consists of about 1800 lines (including lots of com- 
mentary) of FORTRAN code. 
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APPENDIX A 
A TECHNICAL SUMMARY AND A FLOW CHART 

OF THE COMPUTER CODE 

A flow chart sketching the computer code is shown in Figure 3. The main program 
ray.f first sets up the sound speed look-up tables (subroutine speed.f) before integrating 
the rays (subroutine dodeintf) with the desired ray launch angles. The code is in double 
precision throughout. Note that for the code to be universally portable the common tables 
must have the double precision arrays and variables listed before the integer variables. 

The sound speed look-up tables (ctab) are calculated using the Numerical Recipes 
cubic spline routines dspline.f and dsplintf. The subroutine dspline.f calculates the sec- 
ond derivative of sound speed, from which the cubic splined sound speeds are obtained. 
The subroutine dsplint.f has been modified to obtain the subroutine dsplint_both.f which 
returns the values of both sound speed and sound speed gradient. While reading in the 
values for sound speed, the subroutine also obtains the table of profile ranges (range). 

A step size look-up table (steps) is also determined in the subroutine speed.f. As 
mentioned earlier, this predetermined step size is linear from the surface to a user-speci- 
fied depth and then has a tanh functional form below that depth. The user is asked to 
specify the transition depth from linear to tanh forms and the step size values at the sur- 
face, at the transition depth, and at 5500-m depth. 

The bathymetry look-up table (btab) is determined in the subroutine bathy.f. This 
subroutine reads in the maximum allowable bottom bounces (MBONK), the tolerance for 
the ray to miss the ocean bottom (btol), and the bathymetry data. The bathymetry look- 
up table consists of the five variables: range, depth, slope, twice the slope angle, and a 
value of an intercept of the line segment. 

Once the sound speed, range, step size and bathymetry look-up tables have been 
defined, the rays are integrated using the subroutine dodeint.f. Presently the code loops 
over a set of rays at equally incremented launch angles. The subroutine dodeint.f has 
been heavily modified from the Numerical Recipes subroutine example of the same name. 
The role of this subroutine is as a driver for taking the Runge-Kutta steps (step size h) 
with the subroutine drk4.f; the user wishing to change the method of integration from 
Runge-Kutta may merely substitute an alternate subroutine to drk4.f. The subroutine 
drk4.f has been only slightly modified from the Numerical Recipes subroutine of the 
same name. The subroutine drk4.f calls the subroutine derivs.f which calculates the cou- 
pled differential equations (the ray equations) at arbitrary depth and ray angle. The sub- 
routine dodeintf saves the ray paths derived during the integration in variables xp and yp 
and returns the cosine and sine ray angle at the receiver range, the depth of the ray at the 
receiver range, and the ray travel time for writing to a file. 

Range dependence is implemented in the derivs.f subroutine using the variable 
deltaX; deltaX is the horizontal range between a step in the integration and the range of 
the sound speed profile most recently exceeded by the ray. Since range dependence is 
implemented using a constant sound speed gradient between profiles, the sound speed at 
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any step in the integration can be found by c(r, z) = c(rh z) + deltaX dcldr. Here, 
c(rh z) is the sound speed profile at range r,. The value for the vertical gradient of sound 
speed can be found similarly. In general, the step size h, 0(5-200) m, is much less than 
deltaX,O(10km). 
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APPENDIX B 
CALCULATION OF EIGENRAYS 

There are several ways in which eigenrays can be computed accurately, yet with far 
fewer calculations than are required for a complete time front prediction. In all cases, 
eigenrays must be found by first tracing a fan of rays and then determining the ray launch 
angles that result in rays arriving at the receiver depth. However, there are a number of 
shortcuts that can be implemented. 

In a ray fan equally spaced in launch angle, most of the rays concentrate in the 
cusps of the time front and so frequently do little to resolve the time front in the depth 
region of interest. Thus, one of the simplest ways to speed up eigenray calculations is to 
use an initial prediction with a small number of rays in order to define the range of ray 
angles that arrive near the depth of the receiver. Using these selected angle ranges, a sec- 
ond prediction with many rays can be done that is far more efficient at defining the time 
front near the depth of the reciever. 

A second way to gain efficiency is to omit the calculation of travel time in the ini- 
tial fan of rays. All that is required to derive eigenrays is the angle that produces a ray 
that arrives at the receiver depth, so that travel time is not necessary. The present incarna- 
tion of the eigenray code implements this using only two coupled differential equations 
(for tangent of ray angle and ray depth; see Eq. Bl below), rather than the four required 
for obtaining travel time as well. Once the launch angles resulting in rays that arrive at 
the receiver depth are found, a small number of integrations with all four differential 
equations can then be performed to obtain all the information about the eigenrays. 

Eigenray predictions are probably more efficient if fewer, more accurate rays are 
used to calculate the time front rather than many, inaccurate rays. The more linear the 
relation between launch angle and arrival depth, the easier it will be to obtain the eigen- 
rays. 

After the two ray arrivals that span the receiver depth are determined, eigenrays are 
probably best found by a sequence of bisections of ray launch angle giving a sequence of 
rays that converge on the receiver depth. An initial interpolation to solve for the eigenray 
launch angle might improve efficiency, but in general the ray arrivals are not linear in 
launch angle and arrival depth, so the interpolation will not be accurate. The code 
presently uses ordinary bisection on rays that span the receiver depth. Because of non- 
linearities in the relation between launch angle and receiver depth, the sequence of bisec- 
tions sometimes misses the receiver depth. Various contingencies have been built into the 
code to account for this, but it may sometimes happen that the eigenray cannot be found 
at all. It appears that at 3-Mm range, usually less than five bisections are required to find 
a ray that arrives within 10 m of the receiver depth. 

If one wants only the travel time of the eigenrays, one could interpolate the pre- 
dicted time front to get the travel times associated with the depth of the receiver. Travel 
times determined in this way will (for benign oceans) be accurate to within a few mil- 
liseconds. 
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Thus, the travel times of the eigenrays can be determined without having to actually solve 
for the eigenray path. This technique has not been implemented. 

The code here is flexible enough that the user can easily implement ideas for find- 
ing eigenrays. If someone develops code that works well for determining eigenrays, he or 
she is requested to forward those methods to the authors of this report. 

The code for finding eigenrays is similar to that described in Appendix A, with the 
addition of subroutines dodeint_short.f, drk4_short.f, and derivs_short.f. These sub- 
routines use only two differential equations in tangent of ray angle and ray depth. If 
tn = tan(6), then these equations are 

dtn ,  d7'C ,„„ „ 
— = (l + m2) — (Bla) 
dr c 

dz 4- = tn (Bib) 
dr 

( 
dt _ Vl + m2 

dr c 
(Blc) 

The subroutine used to find the eigenray ray launch angles is find_arr.f. This rou- 
tine uses the time front information from the initial ray traces to select pairs of ray angles 
with depths at the receiver range that span the receiver depth. A series of bisections on 
ray launch angle is used to converge on the desired eigenray ray launch angle. The rays 
at the selected angles are then recalculated using all four differential equations to obtain 
all the information about the ray. Since this entire procedure relies on these two different 
integrations giving nearly identical ray paths, the procedure is actually one test of integra- 
tion accuracy. If the eigenrays in the second integration miss the receiver depth, one 
problem may be that the step sizes are too big. However, the integrations are so sensitive 
that the series of step sizes during the two integrations must be fairly well synchronized. 
If even slightly different step sizes are used in the second integration, the rays can miss 
the the receiver depth by 0(100 m). 

Once the eigenrays have been calculated, frequently the next step for the tomogra- 
pher is to calculate the forward problem matrix, 

w vM (B2) 
c(x)2 

r,     v ' 
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Here T, is the ith ray path, 77, is one of a set of functions used to model the ocean, ds is 
an element of ray path length (equal to dr/cos(0)), and c is sound speed. Traditionally, to 
facilitate this calculation the parameter ds/c2 is calculated for each saved step in the ray 
trace. With this parameter, the above integral can be calculated with relative ease. How- 
ever, ds/c2 is not entirely easy to calculate with rigorous accuracy. 

The problem of calculating ds/c2 is illustrated in Figure 4. While a ray path is cal- 
culated using very small horizontal step sizes, 0(5-200 m), the ray path is saved at a 
much large range increment, 0(1000 m). What is required, then, is a value for ds/c2 

appropriate for this much larger horizontal range increment. It is not obvious how this 
parameter is to be calculated rigorously. It is easy, of course, to approximate ds by sum- 
ming the small ds( that occur during the integration, but what of 1/c2 ? Should the values 
of c, 1/c, or 1/c2 be averaged over the several small steps? Sound speed varies so little 
over a path increment that it probably does not matter too much. The present code calcu- 
lates dsj/c2 at each integration step and sums these values over the several integration 
steps that comprise the saved range increment. The value of ds/c2 is saved together with 
the ray path range and depth pairs. Possible errors may arise at depths where the sound 
speed or mode functions are varying rapidly, however. 

With the present set of subroutines, it would be relatively easy to merge the ray 
tracing routines with the calculation of the forward problem. In this way, the forward 
problem matrices can be calculated at the very small step sizes of the integration on the 
fly, as it were, without having to fill one's hard disk up with the stored ray paths. This is 
the ideal way to calculate the forward problem matrices. 

The Bowlin et al. (1992) RAY code appears to address the problem of ds/c2 by 
integrating a variable q = sic2. With this variable, ds/c2 may presumably be calculated at 
the nth step by qn - qn-X. This procedure is not correct, since d(s/c2) = ds/c2 -2s dc/c3. 
The second term has a dangerous dependence on the path length itself. The second term 
oscillates in sign because dc changes sign from upward-going to downward-going rays. 
Calculation of this variable requires the integration of an additional differential equation. 
For small values of s, the values of ds/c2 derived from present code and from the Bowlin 
code appear agree to 1 part in 10,000 for the North Pacific environment modeled by the 
annual mean Levitus atlas. 
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APPENDIX C 
MODIFYING THE CODE FOR COMPUTATIONS IN PARALLEL 

Calculating ray predictions for long-range transmissions is a natural application for 
parallel computation. Each ray trace is independent of all the others, so several computer 
processors can calculate subsets of rays separately. A parallel version of the ray code 
described here has been developed using the MPI suite of subroutines (Gropp et al. 
1994). 

In order for several processors to be able to trace rays, all that is required is that 
they have access to the sound speed look-up table. Thus, the parallel version of the code 
broadcasts this look-up table, together with a few other variables, to all available proces- 
sors. With this information, the available processors can trace subsets of the desired 
rays. When they have completed these calculations, they then communicate the results 
(travel times, ray paths, etc.) back to the master process for printing or other use. The 
MPI routines perform these communications tasks (broadcasting to all processors or 
sending and receiving information between processors) relatively easily. The speed of 
the ray calculations scales well with the number of available processors. 

With a homogeneous set of processors, the complete set of rays to be calculated 
can be broken up into equally sized subsets. Each processor then gets a subset of rays to 
calculate. The present parallelized version of the ray code adopts this strategy. 

With an inhomogeneous set of processors, "load balancing" becomes an issue. 
Fewer rays should be sent to slower processors. It may be better to assign rays singly to 
processors and assign additional rays to a particular processor as its ray calculations are 
completed. MPI includes "non-blocking" send and receive communication subroutines 
which may be used for this purpose. That is, the code will not wait for a particular ray 
trace to be completed before assigning rays to other processors. In this way, a processor 
that is four times faster than another processor will complete four times as many rays 
without requiring the user to preallocate unequally sized subsets of rays to the processors. 
This strategy has not been implemented, but it would not be difficult to do so. 
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APPENDIX D 
INPUT AND OUTPUT FILES AND OTHER OPERATIONAL 

INFORMATION 

As noted often earlier, this code is meant to be modified by the user for his or her 
own purposes. This includes the formats of the sound speed data files and the means to 
input other information such as receiver depth, range, and other parameters of the ray 
trace as well as the output formats. The present setup of the code is described here as an 
example of a way to implement the code. 

The code is presently run by executing the command 

time eigenray < in.ray 

"time", of course, reports the time it takes to execute the raytrace; "eigenray" is the 
executable, and the file "in.ray" contains all of the relevant parameters that "eigenray" 
asks for. 

An example of a file for input to eigenray: 

8. 12. Starting and ending values for ray angle (degrees) 
100 1500. # rays to sketch out time front, and depth below which to omit rays in the 

second raytrace. The second ray trace is not performed for time front 
calculations. 

100 # rays in second ray trace. 
1000 1000 Source and receiver depths (meters) 
0.0 3000000 Start and end ranges (meters) 
1000.0 The range increment to save the ray paths (meters) 
10.0 Tolerance for missing receiver depth (meters) 
1 Save eigenray paths? 0=no, l=yes 
0 Calculate either eigenrays (=0) or a time front (= 1) 
1 Enable ocean bottom? 0=no, l=yes 
test.ssp The sound speed filename 
1500. Transistion depth for step size, linear to tanh (meters) 
5. 100. 500.       Values of step size at the surface, the transition depth, and at the bottom 

(all in meters) 
1.0 Step size scaling e.g., 0.5,1.0,2.0; for testing accuracy 
30 The maximum number of bottom bounces before dropping a ray 
5.0 The tolerance for missing the ocean bottom (meters) 
test.bth The bathymetry file name. These last three lines are not required 

if the flag disabling bathymetry is set. 
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The file of sound speeds has the same format as that of the Bowlin RAY code, with "-1 
range" marking the start of a profile, followed by depth and sound speed. 

An example sound speed file: 
-1    0.000 
0 1500.597 
10 1500.465 
20 1499.793 
30 1498.795 
50 1495.540 
75 1491.698 
100 1489.109 
125 1487.366 
150 1486.174 
200 1484.450 
250 1483.021 
300 1481.752 
400 1479.939 
500 1479.103 
600 1479.168 
700 1479.679 
800 1479.737 
900 1480.225 
1000 1480.835 
1100 1481.586 
1200 1482.276 
1300 1483.210 
1400 1484.137 
1500 1485.137 
1750 1487.678 
2000 1491.187 
2500 1498.126 
3000 1506.161 
3500 1514.534 
4000 1523.252 
4500 1532.259 
5000 1541.404 
5500 1550.529 

-1    50.963   A new sound speed profile at 50.963 km range. 
0 1500.751 
10 1500.612 
20 1499.982 
30 1499.038 (etc., repeated as necessary) 
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When the flag enabling bathymetry is set, the code requires a bathymetry file consisting 
of simply two columns of range and depth, both in meters. 

The time front or eigenray data are written to the file "ray.info". This file consists 
of the travel time, ray angle at the source, ray angle at the receiver, ray upper and lower 
turning depths, depth of ray at receiver range, and number of turning points. The ray 
paths are written to the file "ray.data"; this is not recommended when calculating a time 
front. The columns of this file are range (meters) and depth (meters) along the ray path 
and the parameter dslc2 along the ray path which is used for calculating the matrices for 
inversion of travel times. 
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APPENDIXE 
THE RAY EQUATIONS IN TERMS OF SOUND SLOWNESS 

The ray equations (4a-4d) can be considerably simplified if they are formulated in 
terms of sound slowness. Sound slowness is the reciprocal of sound speed, p = lie. The 
following equations are equivalent to Eqns. (4a-4d), but they are not currently imple- 
mented in the code. They are included here for reference. If A = p cos(6) and 
B-p sin{6), then 

(Ela) 
dA P dp 
dr A dr 

dB P dp 
dr A dz 

dz B 

dr ~~Ä 

dt 

dr 
_P2 

A 

(Elb) 

(Elc) 

(Eld) 

These equations are ordinary differential equations for A, B, z, and t. One advantage of 
using these equations is that one division is saved, and so these equations may be about 
15% faster to compute than Eqns. (4a-4d). However, in Eqns. (4a-4d), the terms involv- 
ing dcßr are neglected, while this is a term essential to equation (Ela). It is unclear to us 
what the implications of this fact are, e.g., whether small errors in the calculation of dcßr 
may prove to be a difficulty in implementing Eqns. (Ela-Eld). The approximation that 
dAldr ~ 0 is probably not adequate. In addition, there are certain logistical difficulties 
with using a look-up table for sound slowness. 

TM 3-98       21 



.UNIVERSITY OF WASHINGTON «APPLIED PHYSICS LABORATORY. 

APPENDIX F 
THE RAY EQUATIONS WITH CURRENT 

The code does not presently offer the option of including the effects of ocean cur- 
rent. We derive here the ray equations that include the effects of ocean current. The user 
interested in calculating the effects of current can modify the code to include the current 
effects. 

A quick review of the literature (i.e., Franchi and Jacobson 1972; Munk et al. 1995) 
found no ray equations that included the effects of current and could be easily imple- 
mented for numerical calculation. There seems to be a tendency in the literature toward 
the cryptic and toward obscure notation. We therefore include here a derivation which 
may prove to be practically useful. 

The textbook by Pierce (1989) gives ray equations with current in terms of the 
derivative with respect to travel time. These equations are 

dv     c2p /r:i . 
_ = _f + v (Fla) 
dt      Q. 

^=--Vc-px(Vxv)-(p-V)v (Fib) 
dt c 

or (in Cartesian coordinates) 

dpi       Q dc     3 _   a 

dt 
" ac       v ° CPO\ = - Zpj^-Vj (F2) 

Here r is ray spatial coordinate, p = \Jco is wave-slowness vector, v is current, and 

Q =  (F3) 
c + vn 

where n is a unit normal that is parallel to the ray. We can immediately make a number 
of simplifications to these equations. We assume that v = (v,0,0), i.e., current is only in 
the direction of the plane of acoustic propagation. We assume that the user of the code 
will project current onto the path between the source and receiver and that currents in the 
vertical are negligible. Further, the wave-slowness vector is 

p = (cos0,O,sin0)/c (F4) 
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and 

Q = 
c + v cos 6 

(F5) 

These simplifications result in the following equations: 

dr     c cos 8 
— = — + v 
dt         Q 

dz     c sin 9 

dt        Q 

d(C0Sd] 
V   c   J 

dt 

Q, dc     cos 9 dv 

c dr        c    dr 

(F6a) 

(F6b) 

(F6c) 

sinö 

dt 

Q dc     cos 6 dv 

c dz        c    dz 
(F6d) 

While it may make for an interesting exercise to integrate these equations using 
small steps of travel time, this is not particularly useful in the present context. We there- 
fore seek to use the magic of mathematics to transform these equations into something 
useful. We will assume that vie « 1 and keep terms only to first order in vie. For exam- 
ple, 

Q=l- 
VCOS0 

(F7) 

The equation for dtldr can be found by taking the reciprocal of the equation for dr/dt: 

dt 1 

dr     c cos 9     c2 - — (2 + tan2 9) (F8a) 

The equation for dzldr can be similarly found by dzldtldrldt: 
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dz J, v 
— = tan 8 1  
dr \       ccos 8 

(F8b) 

The differential equations for d cos 91 dr and d sin 0/dr can be derived similarly by noting 
that 

fcos 8 

dr 

1 dcosd      1 dc 
  cos 0 

c     dr dr 
(F9) 

and 

dc     3c     dz dc 

dr     dr     dr dz 
(F10) 

After six pages of algebra (which interested readers should probably do for themselves to 
check), the set of differential equations, including those for ray angles, is 

dcosd 
dr 

= — sin 8 
(\ dc 1 dc' 
- — tan 6 - - — 
c or c oz 

v dc 1 dv 
+ (3 + tanz 0) — — - tan Ö — 

v dc 
2 dr     c dr c2 dz 

(Flla) 

dsind fl dc 
 = cos 8 

dr 

  1 dc \        v dc     1 dv 
-— tan0--5-+3 — — 

v^c dr c dz)       cL dz     c dz 
(Fllb) 

dz          J-,         v 
— = tan 8 1  
Jr I       ccos Ö 

(Flic) 

dt 1 
dr     c cos 8     c2 - — (2 + tan2 0) (Flld) 

Equations Ella-El Id constitute the ray equations, modified to account for ocean current 
to first order. Note that when v = 0 these equations satisfactorily reduce to the original 
ray equations, Eqs. 4a-4d. 
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In practice, it would be easy to include the current terms in the subroutine derivs.f 
defining the differential equations. The second modification would be in the subroutine 
speed.f to create a look-up table for current analogous to the table for sound speed. 
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Figure 1. Step sizes determined by an adaptive ray trace and the 
predetermined step size presently implemented in the code. The left 
panel shows the step sizes as a function of depthderived by an adaptive 
step size algorithm used to calculate a single ray with a fairly small error 
tolerance. The right panel shows an analytic step size function that 
produces ray predictions as accurate as the adaptive step sizing but that 
require much less computation time. 

28 TM 3-98 



E 
*1 

Q. 
CD 
Q 
i— 
CD 
> 

'CD 
Ü 
CD 

DC 

E 

Q. 
CD 
Q 
k_ 
CD 
> 

"CD 
Ü 
CD 
o: 

CD 
> 

'CD 
Ü 
CD 

2 

3 

1 ■ i    ' •J''.:*::?:»fL:i .5   •   • I». i :• •L'JSl 

2 

3 

'nUiiili'1 

S=0.5 

S=1.0 

S=4.0 

2021 2023        2025 
Travel Time (s) 

■:•• I Mi 
\A| ::j! jtII« 

i !i ii " 

.:  !. i .*•': 5?. |.i M 
:   ••   :-::"V::??-li 

Bowlin 

Colosi 

2021 2023        2025 
Travel Time (s) 

Figure 2. Time front predictions 
associated with various step size 
scalings. The left panels show the 
deterioration of the time front as the 
step size is increased. For very small 
step sizes the ray arrivals are evenly 
spaced. For comparison, predictions 
using the Bowlin and Colosi codes are 
shown in the right panels. In all cases 
the shape and travel time of the time 
front are nearly identical. 
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Program EIGENRAY 

Information about 
source, receiver 
depth,       ► 
range, etc. 

Loop over 
ray launch 
angles 

Write out ray 
information 

Stop 

Subroutine SPEED 
step size table - steps(#depths) 
(read in steps parameters) 
sound speed table - 
ctab(#depths,#profiles,6) 
(read in sound speed profiles) 

Subroutine    Subroutine 
SPLINE SPLINT_BOTH 
(2nd Deriv.)    (c(z), dc/dz) 

Subroutine ODEINT 
integrate over a path 
(save information at regular 
intervals if desired) 

One call to 
initialize 

Subroutine 
DERIVS 

A multitude 
of steps 

Subroutine 
RK4 
Runge-Kutta 
step 

Figure 3. A flow chart of one implementation of the 
ray trace code. This code is designed to be easily 
modified for the user?s purposes. 

Subroutine 
DERIVS 
(ray eqns.) 
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c(z) or TI(Z) 

Q. 

Q 

Saved range increment = £ h| 

Range 

Figure 4. A schematic figure showing the relation of increments 
of ray path, s, to the sound speed profile or mode function. The 
ray path is calculated at small range increments hj (e.g., 5-200 m) 
but saved at a much larger increments (e.g., 1000 m). A value 
of ds/c2 associated with the saved path increment is required 
to calculate the matrices used in the inversion of travel times. 
It is probably better to calculate the matrices while performing a 
ray trace; better accuracy may be obtained by using the small 
step sizes. 

TM 3-98 31 



REPORT DOCUMENTATION PAGE 
Form Approved 

OPM No, 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions 
for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to 
the Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20S03. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

December 1998 
3. REPORT TYPE AND DATES COVERED 

Technical 

4. TITLE AND SUBTITLE 

Ray Tracing for Ocean Acoustic Tomography 

6. AUTHOR(S) 

Brian D. Dushaw and John A. Colosi 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Applied Physics Laboratory 
University ofWashington 
1013 NE 40th Street 
Seattle, WA 98105-6698 

SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Office of Naval Research Defence Advanced Research Projects Agency 
Ballston Tower 1 3701 N. Fairfax Drive 
800 N. Quincy Street Arlington, VA 22203 
Arlington, VA 22217 

5. FUNDING NUMBERS 

DARPA Grant MDA 972-93-1-003 
ONR Grant N00014-97-1-0259 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

APL-UWTM3-98 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

This report describes a new, flexible computer code in the FORTRAN computer language to make ray calculations for ocean 
acoustic tomography. The Numerical Recipes software package provided the basis for much of this computer code. The ray equa- 
tions are reviewed, and ray equations that include the effects of ocean current are derived. Methods are derived for rapidly in- 
tegrating those equations to obtain time front and eigenray information for long-range, deep-water acoustic transmissions. These 
methods include a look-up table for sound speed, sound speed gradient, second derivative of sound speed, and range-dependent 
information. Cubic spline methods are used to interpolate sound speed with depth and to obtain the derivatives of sound speed. 
The choice of the step size increments used to integrate the equations is a critical aspect of the integration, affecting both the 
accuracy of the prediction and the speed of computation. A predetermined, user-specified step size appears to allow more effi- 
cient calculations than"adaptive step" methods. "Adaptive step" methods adjust the step size automatically to maintain a given 
accuracy in the integration of the ray equations, while user-specified step sizes allow one to use prior knowledge of the integration 
problem to achieve the desired accuracy with much less computational overhead. Several integration methods were explored, 
but the classical 4th order Runge-Kutta method appears to be the most efficient and best method for this integration problem. 
Appendices describe detailed aspects of the computer code, as well as the methods used for deriving eigenray information and 
for parallelizing the ray calculations. The computer code is designed to be unstable so that the user can easily modify it to his 
or her own purposes.   

14. SUBJECT TERMS 

Ray tracing, ocean acoustics, geometrical optics 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 

36 
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

SAR 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-f 
Prescribed by ANSI Std. 239-1B 
299-01 


